
//Uchenna Onwudiwe
//CSC 212 - Ali Sabbir
//

#include<iostream>
#include<cstdlib>
#include<ctime>
#include<math.h>

using namespace std;

void is_bst(struct TreeNode* tree, int flag);

struct datatype{
char * name;
int id;
char gender;
char * major;
float gpa;};

datatype max(datatype, datatype);
int max(int, int);

struct TreeNode{
datatype item;
TreeNode *left;
TreeNode *right;
};

class TreeType{
public:

TreeType();
TreeType(TreeType &orig); //copy constructor
TreeType& operator=(TreeType& rhs);
void InsertItem(datatype item);
void Print_Tree();
int TreeHeight();
void DestroyTree();
void DeleteItem(char * key);
int Size();

private:
TreeNode* root;
int TreeSize(TreeNode* root);
void Insert(TreeNode* &root, datatype item);
void Print(TreeNode* cur);
int Height(TreeNode* root);
void Delete(TreeNode* &tree, char * key);

void DeleteNode(TreeNode* &tree);
void Destroy(TreeNode* root);
void GetPredecessor(TreeNode* tree, datatype &data);
void Copy(TreeNode* orig_ptr, TreeNode* ©_ptr);

};

TreeType::TreeType(){
root = NULL;

}

TreeType::TreeType(TreeType &orig){
Copy(orig.root, root);

}

TreeType& TreeType::operator =(TreeType& rhs){
if(this==&rhs) return *this;
else{

Destroy(root);
Copy(rhs.root, root);

}
return *this;

}

int TreeType::Size(){
 return TreeSize(root);}

int TreeType::TreeSize(TreeNode* root){
if (root==NULL)return 0;
else return 1 + TreeSize(root_>left) + TreeSize(root_>right);}

void TreeType::InsertItem(datatype item){
Insert(root, item);

}

void TreeType::Insert(TreeNode* &tree, datatype item){
if(tree==NULL){

tree=new TreeNode;
tree_>right=NULL;
tree_>left=NULL;
strcpy(tree_>item.name,item.name);
tree_>item.id=item.id;
strcpy(tree_>item.major, item.major);
tree_>item.gpa=item.gpa;

}
else if (strcmp(item.name,tree_>item.name)<0) Insert(tree_>left,item);
else Insert(tree_>right, item);

}

int TreeType::TreeHeight(){
return Height(root);}

int TreeType::Height(TreeNode* root){
if (root==NULL) return 0;
else return (1+ max(Height(root_>left), Height(root_>right)));
}

void TreeType::DestroyTree(){
Destroy(root);
root=NULL;

}

void TreeType::Destroy(TreeNode* tree){
if(tree !=NULL){

Destroy(tree_>left);
Destroy(tree_>right);
delete tree;

}
}

void TreeType::Print(TreeNode* cur){
if(cur !=NULL){

Print(cur_>left);
cout<<"NAME="<<cur_>item.name<<",SSN="<<cur_>item.id<<",

GENDER="<<cur_>item.gender<<cur_>item.major<<"GPA="<<cur_>item.gpa<<endl;
Print(cur_>right);

}
}

void TreeType::Print_Tree(){
Print(root);

}

void TreeType::DeleteItem(char * key){
Delete(root, key);

}

void TreeType::Delete(TreeNode* &tree, char * key){
if(tree==NULL){

cout<<"Student record not found\n";
return;

}
else if (strcmp(key,tree_>item.name)<0) Delete(tree_>left, key);

else if (strcmp(key,tree_>item.name)>0) Delete(tree_>right, key);
else DeleteNode(tree);

}

void TreeType::DeleteNode(TreeNode* &tree){
datatype data;
TreeNode* temp;

temp=tree;
if(tree_>left==NULL){

tree=tree_>right;
delete temp;

}
else{

GetPredecessor(tree_>left, data);
strcpy(tree_>item.name,data.name);
tree_>item.id=data.id;
data.gender=tree_>item.gender;
tree_>item.gpa=data.gpa;
Delete(tree_>left, data.name);

}
}

void TreeType::GetPredecessor(TreeNode* tree, datatype& data){
while(tree_>right !=NULL)tree=tree_>right;
strcpy(data.name,tree_>item.name);
data.id=tree_>item.id;
strcpy(data.major, tree_>item.major);
data.gpa=tree_>item.gpa;

}

void TreeType::Copy(TreeNode* orig_ptr, TreeNode* ©_ptr){
if(orig_ptr==NULL) copy_ptr=NULL;
else{

copy_ptr=new TreeNode;
copy_ptr_>item=orig_ptr_>item;
strcpy(copy_ptr_>item.name,orig_ptr_>item.name);
copy_ptr_>item.id=orig_ptr_>item.id;
strcpy(copy_ptr_>item.major,orig_ptr_>item.major);
copy_ptr_>item.gpa=orig_ptr_>item.gpa;

Copy(orig_ptr_>left, copy_ptr_>left);
Copy(orig_ptr_>right, copy_ptr_>right);

}
}

datatype max(datatype x, datatype y){
if (strcmp(x.name,y.name)>0)

return x;
else return y;

}

int max(int x, int y){return x>y?x:y;}

void is_bst(TreeNode* tree, int flag){
if(tree==NULL) flag=1;
else if (tree_>left == NULL && tree_>right==NULL)

flag=1;
else if(tree_>left==NULL){

if(strcmp(tree_>item.name,tree_>right_>item.name) < 0)
is_bst(tree_>right, flag);

else flag=0;
}
else if(tree_>right==NULL){

if(strcmp(tree_>item.name,tree_>right_>item.name) > 0)
is_bst(tree_>right, flag);

else flag=0;
}
else if ((strcmp(tree_>right_>item.name,tree_>item.name)>0) &&

(strcmp(tree_>left_>item.name,tree_>item.name)<0)){
is_bst(tree_>left, flag);
if(flag!=0)is_bst(tree_>right, flag);

}
else flag=0;

}

void main(){

datatype records;
TreeType database;
char * a="abcdefghijklmnopqrstuvwxyz ";
int counter=0;
int gen;
int course;
records.name="";
char * b;

while (counter<=29){
int i=rand()%26;
for (int j=0; j<=i; j++)

records.name[i]=a[i];

gen=rand()%2;
if(gen==0) records.gender='M';
else records.gender='F';

course=rand()%6+1;
switch (course){
case 1:

records.major="CS ";
break;

case 2:
records.major="MATH";
break;

case 3:
records.major="ENG ";

break;
case 4:

records.major="ECON";
break;

case 5:
records.major="PHYS";
break;

case 6:
records.major="CHEM";
break;

}

records.gpa=rand()%4;
records.id=rand()%1000 + 678;

database.InsertItem(records);

};

char command='t';

while (command!='q' ||command!='Q'){
cout<<"\nPlease enter a command key\n"<<

"\"I\"= insert new student record\n"<<
"\"D\"= delete existing student record\n"<<
"\"S\"= retrieve existing student record\n"<<
"\"P\"= print entire database_:";

cin>>command;

if (command=='I' ||command=='i'){
cout<<"\nenter student name:";
cin.getline(records.name,25);
cout<<"\nenter student id:";

cin>>records.id;
while(records.id<0){

cout<<"\nenter valid student id:";
cin>>records.id;}

cout<<"\nenter gender(M or F):";
cin>>records.gender;
while(records.gender!='m'

||records.gender!='M'||records.gender!='f'||records.gender!='F'){
cout<<"\ninvalid gender! enter gender (m or f)";

cin>>records.gender;}
cout<<"\nenter student major(1=CS, 2=MATH, 3=ENG, 4=ECON,

5=PHYS, 6=CHEM)";
cin>>course;
while (course<1 ||course>6){

cout<<"\nenter a valid course number!";
cin>>course;}

switch (course){
case 1:

records.major="CS ";
break;

case 2:
records.major="MATH";
break;

case 3:
records.major="ENG ";
break;

case 4:
records.major="ECON";
break;

case 5:
records.major="PHYS";
break;

case 6:
records.major="CHEM";
break;

}
database.InsertItem(records);

}

else if (command=='d' ||command=='D'){
cout<<"\n enter student name to be deleted:";

cin.getline(b,25);
database.DeleteItem(b);
continue;
}

else if (command=='s'||command=='S'){
cout<<"\nenter student name to be retrieved";
cin.getline(b,25);

}
else if (command=='p'|| command=='P'){
cout<<"\n";
database.Print_Tree();
cout<<"\n tree height is:"<<database.TreeHeight()<<

"\n log(1,n) is: "<<ceil(log(database.Size()));}

else continue;

}
}

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

