//[Uchenna Onwudiwe
/ICSC 212 - Ali Sabbir
/!

#include<iostream>
#include<cstdlib>
#include<ctime>
#include<math.h>

using namespace std;
void is_bst(struct TreeNode* tree, int flag);

struct datatype{
char * name;
int id;
char gender;
char * major;
float gpa;};

datatype max(datatype, datatype);
int max(int, int);

struct TreeNode{
datatype item;
TreeNode *left;
TreeNode *right;

h

class TreeType{
public:

TreeType();
TreeType(TreeType &orig); //copy constructor
TreeType& operator=(TreeType& rhs);
void Insertltem(datatype item);
void Print_Tree();
int TreeHeight();
void DestroyTree();
void Deleteltem(char * key);
int Size();

private:
TreeNode* root;
int TreeSize(TreeNode* root);
void Insert(TreeNode* &root, datatype item);
void Print(TreeNode* cur);
int Height(TreeNode* root);
void Delete(TreeNode* &tree, char * key);

void DeleteNode(TreeNode* &tree);

void Destroy(TreeNode* root);

void GetPredecessor(TreeNode* tree, datatype &data);
void Copy(TreeNode* orig_ptr, TreeNode* ©_ptr);

I3
TreeType:: TreeType()
root = NULL;

}

TreeType:: TreeType(TreeType &orig)
Copy(orig.root, root);
}

TreeType& TreeType::operator =(TreeType& rhs){
if(this==&rhs) return *this;
else{
Destroy(root);
Copy(rhs.root, root);

return *this;

}

int TreeType::Size()
return TreeSize(root);}

int TreeType::TreeSize(TreeNode* root){
if (root==NULL)return O;
else return 1 + TreeSize(root_>left) + TreeSize(root_>right);}

void TreeType::Insertltem(datatype item){
Insert(root, item);
}

void TreeType::Insert(TreeNode* &tree, datatype item){
if(tree==NULL){

tree=new TreeNode;
tree_>right=NULL;
tree_>left=NULL;
strcpy(tree_>item.name,item.name);
tree_>item.id=item.id;
strcpy(tree_>item.major, item.major);
tree_>item.gpa=item.gpa;

else if (strcmp(item.name,tree_>item.name)<0) Insert(tree_>left,item);
else Insert(tree_>right, item);

int TreeType::TreeHeight()}{
return Height(root);}

int TreeType::Height(TreeNode* root){
if (root==NULL) return O;
else return (1+ max(Height(root_>left), Height(root_>right)));

}

void TreeType::DestroyTree()}
Destroy(root);
root=NULL,;

}

void TreeType::Destroy(TreeNode* tree){
if(tree I=NULLX
Destroy(tree_>left);
Destroy(tree_>right);
delete tree;

}

void TreeType::Print(TreeNode* cur){
if(cur 'I=NULL)
Print(cur_>left);
cout<<"NAME="<<cur_>item.name<<",SSN="<<cur_>item.id<<",
GENDER="<<cur_>item.gender<<cur_>item.major<<"GPA="<<cur_>item.gpa<<endl;
Print(cur_>right);

}

}

void TreeType::Print_Tree(){
Print(root);

}

void TreeType::Deleteltem(char * key{
Delete(root, key);
}

void TreeType::Delete(TreeNode* &tree, char * key)}
if(tree==NULL){
cout<<"Student record not found\n";
return;

else if (strcmp(key,tree_>item.name)<0) Delete(tree_>left, key);

else if (strcmp(key,tree_>item.name)>0) Delete(tree_>right, key);
else DeleteNode(tree);

}

void TreeType::DeleteNode(TreeNode* &tree){
datatype data;
TreeNode* temp;

temp=tree;

if(tree_>left==NULLX
tree=tree_>right;
delete temp;

}

else{
GetPredecessor(tree_>left, data);
strcpy(tree_>item.name,data.name);
tree_>item.id=data.id;
data.gender=tree_>item.gender;
tree_>item.gpa=data.gpa;
Delete(tree_>left, data.name);

}

void TreeType::GetPredecessor(TreeNode* tree, datatype& data){
while(tree_>right '=NULL)tree=tree_>right;
strcpy(data.name,tree_>item.name);
data.id=tree_>item.id;
strcpy(data.major, tree_>item.maijor);
data.gpa=tree_>item.gpa;

}

void TreeType::Copy(TreeNode* orig_ptr, TreeNode* ©_ptr){

if(orig_ptr==NULL) copy_ptr=NULL;

else{
copy_ptr=new TreeNode;
copy_ptr_>item=orig_ptr_>item;
strcpy(copy_ptr_>item.name,orig_ptr_>item.name);
copy_ptr_>item.id=orig_ptr_>item.id;
strcpy(copy_ptr_>item.major,orig_ptr_>item.major);
copy_ptr_>item.gpa=orig_ptr_>item.gpa;

Copy(orig_ptr_>left, copy_ptr_>left);
Copy(orig_ptr_>right, copy_ptr_>right);

}

datatype max(datatype x, datatype y)}
if (strcmp(x.name,y.name)>0)

return x;
else return y;

}
int max(int x, int y){return x>y?x:y;}

void is_bst(TreeNode* tree, int flag){
if(tree==NULL) flag=1;
else if (tree_>left == NULL && tree_>right==NULL)
flag=1;
else if(tree_>left==NULL)
if(strcmp(tree_>item.name,tree_>right_>item.name) < 0)
is_bst(tree_>right, flag);
else flag=0;
}
else if(tree_>right==NULL)
if(strcmp(tree_>item.name,tree_>right_>item.name) > 0)
is_bst(tree_>right, flag);
else flag=0;

else if ((strcemp(tree_>right_>item.name,tree_>item.name)>0) &&
(strcmp(tree_>left_>item.name,tree_>item.name)<0)){
is_bst(tree_>left, flag);
if(flag!=0)is_bst(tree_>right, flag);

else flag=0;

}

void main(){

datatype records;

TreeType database;

char * a="abcdefghijkimnopqgrstuvwxyz ";
int counter=0;

int gen;

int course;

records.name="";
char * b;

while (counter<=29){
int i=rand()%26;
for (int j=0; j<=i; j++)
records.nameli]=a[i];

gen=rand()%?2;
if(gen==0) records.gender="M";
else records.gender='F';

course=rand()%6+1;

switch (course){

case 1:
records.major="CS ";

break;

case 2:
records.major="MATH";
break;

case 3:
records.major="ENG ";

break;

case 4:
records.major="ECON";
break;

case 95:
records.major="PHYS";
break;

case 6:
records.major="CHEM";
break;

}

records.gpa=rand()%4;
records.id=rand()%1000 + 678;

database.Insertltem(records);

J#
char command="t";

while (command!="q" |[command!="Q"){
cout<<"\nPlease enter a command key\n"<<
"\"I\"= insert new student record\n"<<
"\"D\"= delete existing student record\n"<<
"\"S\"= retrieve existing student record\n"<<

"\"P\"= print entire database_:";
cin>>command;

if (command=="l' ||command=="i"}{
cout<<"\nenter student name:";
cin.getline(records.name,25);
cout<<"\nenter student id:";
cin>>records.id;
while(records.id<0)
cout<<"\nenter valid student id:";
cin>>records.id;}

cout<<"\nenter gender(M or F):";
cin>>records.gender;
while(records.gender!="m'
||records.gender!="M'||records.gender!="f'||records.gender!="F'}{
cout<<"\ninvalid gender! enter gender (m or f)";
cin>>records.gender;}
cout<<"\nenter student major(1=CS, 2=MATH, 3=ENG, 4=ECON,
5=PHYS, 6=CHEM)";
cin>>course;
while (course<1 ||course>6){
cout<<"\nenter a valid course number!";
cin>>course;}
switch (course){
case 1:
records.major="CS ";
break;
case 2:
records.major="MATH";
break;
case 3:
records.major="ENG ";
break;
case 4:
records.major="ECON";
break;
case 5:
records.major="PHYS";
break;
case 6:
records.major="CHEM";
break;

database.Insertltem(records);

else if (command=='d" ||command=='D"){
cout<<"\n enter student name to be deleted:";
cin.getline(b,25);
database.Deleteltem(b);
continue;

}

else if (command=='s'||command=='S'}{
cout<<"\nenter student name to be retrieved";
cin.getline(b,25);

}

else if (command=='p'|| command=="P'}{

cout<<"\n";

database.Print_Tree();

cout<<"\n tree height is:"<<database.TreeHeight()<<
"\n log(1,n) is: "<<ceil(log(database.Size()));}

else continue;

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

